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SUMMARY 

This is the final technical report on a study of finite amplitude attenua- 

tion that has been performed under Contract N00039-75-C-0263, Program Code 

5G10, ARPA Order 2910.   The program objective has been to determine by 

experimental and theoretical means the limitations imposed by finite amplitude 

attenuation on the performance of parametric sonars.    The results are intended 

for use in assessing the potential of parametric receivers and transmitters in 

military applications. 

The axial response of the parametric receiving array has been calculated 

in two ways.    The first is by use of a one dimensional model in which the 

secondary signal levels are predicted from weak shock theory.   The second 

is Dy numerical evaluation of the scattering integral solution in which finite 

amplitude attenuation is introduced by means of a taper function derived from 

the one dimensional solution. 

An experiment has been performed in which the axial secondary signal 

level as a function of pump source level was measured.   These data agree with 

the theoretical results,  but the agreement is not conclusive because the maxi- 

mum pump source level was not sufficiently high.    However, a comparison 

with data from another investigation confirms the theory for cases when the 

receiving hydrophone is well in the farfield of the pump,   -rf  

Comparison with a set of experimental results for which the interaction 

was almost entirely in the pump nearfield indicates that,  unlike the farfield 

case, the nearfield behavior may be quite different from that predicted by the 

present theory.   Caution is therefore advised in applying the present results 

to nearfield interactions. 
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In addition to the parametric receiving array work,  several parametric 

transmitting array taper functions have been compared in the context of 

numerical evaluations of the scattering integral.   A mean taper function is 

derived from weak shock theory and is compared with the others. 

In all cases the results are surprisingly similar to those obtained 

using the model g'ven by Meilen and Moffett. 

ii 
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1.0 INTRODUCTION 

This is the Final Technical Report under Contract N00039-75-C- 

02 63, Program Code 5G10, ARPA Order 2910.   The program objective has 

been to determine, by experimental and theoretical means, the limitations 

imposed by finite amplitude attenuation on the performance of parametric 

sonar.   The main emphasis in this work has been on the parametric receiving 

array which, in contrast to the parametric transmitting array, has received 

only a small amount of previous attention so far as finite amplitude attenua- 

tion is concerned. 

The axial response of the parametric receiving array has been 

modeled in two ways.   The first model consists   of a one dimensional wave 

undergoing time domain distortion to produce sum and difference frequencies 

as it propagates from the pump projector to the receiving hydrophone.   In 

the second model, the parametric receiver is represented as a volume source 

of sum and difference frequencies that scatter from each point in the inter- 

action volume and are summed at the receiving hydrophone.   In the latter 

model the finite amplitude attenuation is introduced by means of a taper 

function derived from the one dimensional model. 

With the introduction of a simple correction to the one dimen- 

sional model to account for nearfield diffraction effects, the two models 

agree quite well with each other.   The experimental results for cases when 

the receiving hydrophone is well in the farfield of the pump are also in close 

agreement with the theory.   There is, however, evidence that the taper model 

used may not be adequate for describing the effects of finite amplitude attenua- 

tion in the nearfield of the pump.   There, the loss due to saturation (based 

on the only available set of experimental data) appears to be considerably 

less than expected.   This agrees with the results of an alternative taper 

function that is simply equal to the fundamental component amplitude in 

the saturating pump signal. 

The taper function derived herein is based on farfield considera- 

tions and is believed to be realistic.   While it is tempting, based on the 
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apparently different behavior in the nearfield to combine the two types of 

taper, this has not been done owing to the lack of theoretical justification 

and the availability of only a single source of nearfield data.   Thus, appli- 

cation of the theory presented here for the axial response of the parametric 

receiving array should be restricted to cases in which the receiving hydro- 

phone is well in the farfield of the pump. 

The experimental portion of this investigation produced data for 

the axial response of the parametric receiving array that agrees well with 

the theory as calculated by the methods described herein.    However, efforts 

to produce a pump signal of sufficient intensity to make the res-alts regard- 

ing the effects of saturation conclusive were unsuccessful.   It has, therefore, 

been necessary to rely on results obtained by other investigators for valida- 

tion of the theory. 

As a secondary task of the present investigation the parametric 

transmitting array was modeled by use of numerical evaluation of the volume 

scattering integral with inclusion of a taper function capable of accounting 

for finite amplitude attenuation as a fui.ction of source amplitude, range f.nd 

angle relative to the acoustic axis of th'i projector.   The model was so con- 

structed that a variety of taper functions could be used for comparison 

purposes in addition to the one derived in this report.   Several such taper 

functions are compared both as to their mathematical form and as to their 

performance in the scattering integral evaluation.    The performance of the 

model with the taper function derived in this report is tested by comparison 

of computed results with experimental data obtained by Mellenbruch and 

Muir1 for the case of a parametric array reflected from a pressure release 

surface a short distance from the projector. 

The technical body of this report is organized into two major 

sections following the introductory material in Section 1. 0.    Section 2. 0 

contains the treatment of the parametric receiving array including theory, 

experiment, comparison with available data and conclusions.   Section 3. 0 

deals with finite amplitude effects in parametric transmitting arrays. 

■L'    ■   ■ 
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The       "mical body is now preceded by a brief review of the 

background of th        --ametric array. 

1. 1 Backcrround 

The parametric array had its beginnings about 1960 with the 

theoretical work of Westervelt. '    Westervelt's analysis showed that if a 

sound wave consisting of two discrete high frequencies could be confined 

to a narrow, collimated beam, the two components would interact to produce 

a sound wave at the difference frequency.   This is the basis of the parametric 

transmitting array.    He showed that the directivity of the difference frequency 

sound wave far from the interaction region, would depend only on the attenua- 

tion at the primary frequencies and on the difference frequency wave number. 

The interaction region is limited by the attenuation at the primary frequencies. 

In addition to the assumption that the primary beam acted as a 

line source, Westervelt assumed that the primary wave attenuation was 

adequately described by linear theory (i. e., that the amplitude was not so 

high that finite amplitude attenuation became a factor).   Early experimental 

results confirming Westervelt's theory were published by Bellin and Beyer. 

Westervelt also observed that a higu frequency pump could be made to function 

as a receiver by nonlinear interaction with a low frequency signal.   This is 

the basis of the parametric receiving array. 

Numerous authors have extended the basic parametric trans- 

mitting and receiving array theories to describe more realistic geometries 

and to account for high amplitudes.   There have been two basic approaches 

to handling geometry.   The first is to approximate the interacting signals 

as one dimensional propagating waves (see, for example, Refs.  5 and 6). 

The second is to perform a three dimensional integration as was done by 

Muir and Willette. 7   The latter approach is the more general but is less 

amenable to extension to account for finite amplitude effects.    It has,  in 

fact, been the former approach that has been used almost exclusively in 

dealing with finite amplitude effects. 
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Very little work has been done in analyzing finite amplitude 

etfects in parametric receiving arrays.   Experimental data showing satura- 
Q 

tion in parametric receivers have been published by Berktay and Al-Temimi 
g 

and by Konrad, Meilen and Moffett.     A theoretical model was presented 

by Bartram    for cases when both pump and signal are plane waves.    Other 

geometries have not been dealt with. 

Other work related to the parametric receiving array has been 

done by Fenlon    in addressing a multiple frequency parametric source. 
12 Schaffer and Blackstock     also performed related work in their study of 

modulation of an intense high frequency signal by a low frequency signal. 

Finite amplitude effects in parametric transmitting arrays have 
13 14 

been dealt with by Meilen and Moffett,    Merklinger,      Bartram and Obeen dealt witn Dy Meilen and JVionett,    ivjerjcunger,      darcram ana 

Westervelt,      and Fenlon.    '      In all cases, quasi one dimensional models 

were utilized although Merklinger did formulate the problem in more generality. 

The treatment of finite amplitude attenuation in parametric arrays 

is generally based on one dimensional models and often on theories originallv 

formulated for single frequency sources.    Useful theoretical treatments of 
18   19 

single frequency sources have been given by Blackstock.    '      A numerical 
20 

solution for spherical waves of arbitrary spectrum has been given by Fenlon. 

Single frequency waves from piston sources have been studied by Merklinger, 
21 22 23  24 

Berktay and Safar,     Shooter,  Muir and Blackstock,     Lockwood,    '      Lockwood, 

Muir and Blackstock,     and Browning and Meilen. 

Experimental data that demonstrate the performance of various 
7 

experimental parametric transmitters have been reported by Muir and Willette, 
2 7 14 Muir and Blue,      Merklinger,      and numerous others.    One specific experi- 

ment that is quite valuable for verifying the detailed behavior of a parametric 

transmitting array theory is the phase reversed parametric array experiment 

reported by Mellenbruck and Muir.     There a parametric array was rellected 

from a pressure release surface at a range of four yards.   The reflection 

caused a return of energy from the harmonics to the fundamental component 

of the carrier signal, thereby supposedly prolonging the interaction and in- 

creasing the efficiency.   The expected efficiency increase was never measured. 
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28 A theoretical attempt by Lockwood    at describing the phase reversed array- 

disclosed a weakness in the concept on which the model used was based 
and led to the development of the taper function model described in Section 

3. 1 of the present report. 
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2.0 PARAMETRIC RECEIVING ARRAY AXIAL RESPONSE 
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The prediction of finLe amplitude behevioi in the parametric 

receiving array is,  in the present work,  based on analysis of the time 

domain distortion of a composite wave that initially consists of an intense, 

monochromatic pump wave and a low amplitude signal wave.   As the com- 

posite wave travels, distortion components are produced by the modulation 

of the pump wave by the signal wave and of the signal wave by the pump 

wave, the latter being generally a small effect. 

The distortion components of interest,  i. e.,  sum and difference 

frequencies, are generally close in frequency to the pump signal, and in 

the pump farfield they travel with the pump wave.    On the other hand, dis- 

tortion signals produced in the pump nearfield are subject to diffraction. 

It is because of these nearfield generated signals that a purely one dimen- 

sional model does not, in general, adequately describe the axial response 

of the parametric receiver. 

The geometric spreading of the secondary signals is handled 

by two different methods.   First, the one dimensional model derived in 

Section 2. 1 is corrected, as described in Section 2.1.1, by a simple geo- 

metrical factor that approximately compensates for diffraction in the near- 

field.   Then in Section 2.2 a second model is described wherein the geometry 

is dealt with rigorously using the scattering integral approach.    Here the 

finite amplitude effects are handled consistent with the one dimensional 

model by use of a taper function derived in Section 2. 2. 1 by differentiating 

the one dimensional solution. 

The results are compared with experimental data of other investi- 

gators in Section 2. 3.   Then in Section 2.4, the experimental work performed 

in the present investigation is reported.   Finally, the conclusions presented 

in Section 2. 5 bring the discussion of the parametric receiving array to a 

close. 

.'.v. • ■ . ." ■ — ■ .- . .^  ■ ■     ..^lamjmeaujjj^^^. 
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2. 1                Weak Shock Theory Formulation of Parametric 
Receiving Array Axial Response  

29 
In the first quarterly progress report   of this investigation a deri- 

vation was given of a math model   f parametric receiving array axial response. 

The signal was assumed to be a plane wave and the pump was assumed to be 

a one dimensional i^ane, cylindrical or spherical wave.   Of primary interest 

are the plane and spherical wave formulations. 

The derivation/as given,  suffers from two problems.    First, the 

secondary frequencies are shown to be produced by modulation of the pump 

by the signal and also by modulation of the signal by the pump but in the 

Clatter case the secondary frequencies produced appear to propagate with the 

signal.   Actually, when the pump is spherical it modulates the signal along 

r a spherical wave front and the interaction products should spread spherically, 

not as the plane wave signal.   This fact, which is apparent from the scatter- 

ing integral formulation, means that,  even in this simple geometry, deter- 

mination of the parametric receiving array axial response is not a one dimen- 
«nit £ 

sional problem.   The second problem is that in attempting to account for 

absorption by using modified weak shock theory, the absorption at the 

secondary frequencies cannot be correctly represented and must be introduced 

at the end of the derivation in fd hoc fashion. 
in 

\ 

{     - The derivation as now presented is made rigorous by stipulating 

- that the signal frequency be much smaller than the pump frequency,  in which 

case the sum and difference frequencies are approximately equal to the pump 

frequency.   The result of modulation of the signal by the pump may now be 

ignored.   Two additional changes are introduced in the present derivation. 

The signal is assumed to spread with a large but finite radius of curvature 

and the signal is assumed to suffer no significant loss due to absorption 

within the region of interaction. I 
I 
I 
I 
I 

With the stated assumptions, the pump and signal wave field 

is given by 

     ..„J..V.JMJ.. ........ ~ 
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where A 0   =   ß k 

"r (x) 

>r o   o 

dx 

(1) 

(2) 

represents the total retardation of the phase of a given wavelet resulting from 

the integrated effect of the disparity between the phase velocity and the small 

signal sound speed (group velocity). 

Equation (1) may be rewritten with the substitutions 

V   = 
epoCo 

\n      a   (r-r ) r     \      e   ov       o 

r-r. 
= w       t - 

0   =   y + A 0   ,    and 

n 

Mr)   =   &      T- o I r 

L + r1 

L + r 

as V = sin 0 + 5 (r)  sin ^ 0   . 

The formulation given above departs from the Earns haw solution 

for the phase distortion of finite amplitude waves by the inclusion of the 

absorption term.    However, when absorption is included in this manner the 

continuous portions of a wave containing shocks may be described as in 

weak shock theory (Biackstock, Ref.   18) with the result that the high and 

(3) 

(4) 

(5) 

(6) 

(7) 
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A0   = ße ko    , 

r n 
r -a  (x-rj 

I   x 
dx sin 0 

+     6 
L + r, 
L + x     dx sin   ß 0 I   ; 

so, letting 

n 

a  * ße K x 

-or   (x - r ) 
o o       j 

e dx    , 

and °s-ßt ko  5o 

L + r1 

L + x dx 

(8) 

one obtains the expression for 0 as 

0   =   y + a sin 0 + a   sin fi 0 
s 

(Basöd on reasoning given in Ref.  24,  it may be that for long receiver ranges 

a    in Eq.  9 should be replaced by 2 or  .    Normally,  however, the difference 

is very small and for the present the form given is satisfactory.) 

It is now observed from Eq.  (11) that 

!0-y| <  er + a 

Now,  if fi (a + a ) <  1, the maximum phase error incurred by replacing 0 by 

(9) 

(10) 

(U) 

(12) 
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y in the last term of Eq. (11) is 1 radian. Thus, the substitution can be 

made without appreciable effect on the solution and the interaction com- 

ponents may be obtained from Eq.  (7) with 0 given by 

0   =   y + a sin 0 + a   sin fi y   . 

With the substitution 

Eq. (13) becomes 

y'   =   y + a   sin fi y    , 

0   =   y' + a sin 0 

Then the first term of Eq.  (7) assumes the form of the Eamshaw solution. 
18 

Weak shock theory as formulated by Blackstock    may now be applied.   The 

solution expressed as a Fourier series is 

(13) 

(14) 

(15) 

00 

t. 

; 

i 
i 

sin 0   = B   (CT) sin n y' 
n 

n= 1 

18 
where the values for B   (o) are those derived by Blackstock.       Eqs.  (15) 

n 
and (16) may be substituted into Eq. (7) to give an explicit solution in terms 

of y' as 

00 

V L 
n= 1 

B   (a) sin n y' + 6 (r) sin fi 

oo ou 

y' + a   ;      B   (a) sin n y' 

n= 1 

It is now necessary only to extract the sum and difference fre- 

quency components which will be the coefficients of sin (1 ± O) y.   With 

the substitution of Eq. (14) into Eq. (17) and with the assumption that as 

is small and further, that 6 (r) fi a   is negligible,  it is possible to write 

oo 

V =   V   B   (cr) sin n (y+^g sin fiy) + ö(r) sin Cl 

n= 1 

oo 

y+ a  y     B   (a) sin n y 

n = 1 

(16) 

(17) 

(18) 

10 
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The only terms of the sums in Eq. (18) that significantly affect 

the sum and difference frequencies are the n = 1 terms.   Thus, discarding 

the rest we have 

V = 8,(0) sin (y + a   sin ft y) + 6(r) sin ^ (y + a B^a) sin y)   . 
1 s 

Equation (19) may be thought of as the sum of two broadband FM signals. 

The first term represents the modulation of the pump by the signal and the 

second represents the modulation of the signal by the pump. 

Equation (19) may be written in exponential notation as 

-iy      -ia  sin^y -iCiy      -1^ crB^cOsiny 
s + 6(r) i e e V = R    < i BAa) e e e i 

Then,  using the Fourier Bessel expansion we obtain 

V = R    I i BAa) e" y 

e 1 
J    (CT ) e Jm     s 

-imfiy 

m= -00 

00 

+ 6(r) i e' 
• i fi y    \ fi aB^a) 

-iky 

lc= -00 

Selecting only the m = ± 1 and k = ± 1 terms that give sum and 

difference frequencies and returning to real notation, we obtain 

V   =   B^or) Jj (as) sin (1 + «) y - sin (1 - «) 

.1 
+   6(r) J,    ß a BjCa) 1  ; sin (1 + 0) y + sin (1 - n) y 

(19) 

\  .      (20) 

(21) 

(22) 

11 
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It is now apparent that if fi « 1, the second term above may be neglected 

in comparison to the first.   Thus, the result of modulation of the pump by 

the signal is retained and the result of the modulation of the signal by the 

pump, with its geometrical inconsistency's discarded.   The result for the 

sum and difference frequencies becomes 

i. 

i 

0 

D 
I 
I 

D 

V±   =   B^a) Jj (CTS) sind ±n) y 

12, 
A similar result was obtained by Schaffer and Blackstock    for the case of an 

intense low frequency modulating a k-w amplitude high frequency.    However, 

in the present case it has been possible to include the effects of shocks in 

the pump wave through the B, term derived from weak shock theory. 

In dimensional notation the magnitudes of the sum and difference 

pressure signals become 

o   o 

n 

BjCcr) JjCoJ   e 
-"o^-'o) 

Normally, a   is small so that the sma1! argument approximation of the Bessel 

function is valid and one may substitute 

a ße k   6 / L + r 
T  i    \ ~     s    _ o   o 
h^J   -    2     " 2 (L + r^   in L + r 

If the reference distance r1 is taken to be the receiver location, then r - ^ 

Furthermore, if L is large the value of cr   reduces to the plane wave signal 
S3 

result 

■^ ße k   5   r o   o 

The low amplitude limit of Eq.  (24) is then 

(23) 

(24) 

(25) 

(2 6) 
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30 
wh.ch agrees with the results of Berktay and Shooter    and Berktay and 

Al-Temimi8 for the cases n = 1 and n = 0. respectively,  except that here 

u   and a   have been approximated by ^o and oiQ . 

2. i. 1 Use of the Weak Shock Theory Results to Calculate Parametric 

Receiver Amplitude Response   -   The expressions derived in the previous 

section may be used to calculate the amplitude response of parametric receiv- 

ing arrays that have interaction volumes either entirely in the pump nearfield 

or predominantly in the pump farfield.    For intermediate cases where the 

receiver is in the farfield of the pump but there is a significant contribution 

from the nearfield, the plane wave and spherical wave solutions may be 

combined.    However,  it is necessary to correct the nearfield portion to 

account for spreading of the secondary signals.   This is done by adding to 

the spherical wave solution the plane wave solution multiplied by the factor 

R-R. 

F   = 
1 
R 

R 
R 

r  o 

J 
R-x dx + - 

R-R 

> R where the quantities (R-R0) are replaced by Ro in the event that R- Ro      -0 

Similar factors were derived in Ref.  29 for the nearfield of the parametric 

transmitting array. 

The two terms of the factor represent the portion of the nearfield 

beyond one Rayleigh distance from the receiver, the contributions from which 

undergo spherical spreading, and the portions within one Rayleigh distance 

which do not.   The initial factor l/R cancels the range dependence of the 

plane wave solution which is,  in effect, replaced by the quantity in brackets. 

(28) 
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The farfield contribution is calculated by using the spherical 

wave solution with a source radius of Ro and an initial distortion based on 

the value of a calculated at R0 for the nearfield distortion. 

2.2 Scattering Integral Evaluation of Parametric 
Receiving Array Axial Response  

Because the determination of the secondary signal amplitude in a 

parametric receiving array with a piston pump transducer is not generally a 

problem involving only one spatial dimension, it is often desirable to use 

the scattering integral approach.    In order to account for saturation effects 

it is then necessary to insert a taper function into the integral.    Such a 

taper function is now derived. 

2.2.1 Taper Function Derivation  -   It is tempting to use the pump funda- 

mental harmonic coefficient B^a) as the taper function because this would 

make the source strength density proportional to the local pump amplitude. 

However, that approach would not include the diminishnent of the secondary 

signal due to pump saturation as seen in the weak shocK. solution.   There- 

fore, the alternative approach of deriving the taper function from the weak 

shock result is adopted. 

The finite amplitude taper is calculated from the weak shock 

solution by taking the range derivative of the high intensity solution to obtain 

the one dimensional source strength density and then dividing by the low 

amplitude source strength density to normalize the result.    Since only the 

high intensity taper is desired the spherical wave solution is range normalized 

before differentiating. 

The ^wo expressions (neglecting absorption) are,  from the pre- 

vious section with a   = <*    =  0,  for the plane wave region of the pump. 

p± = poco * V^'iK* 

and for the spherical wave region of the pump 

(29) 
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r_       ± 

where 

and a is given by 

Poco   e3l^ W    ' 

s o o 

a   =/3ek   r 

in the plane wave region,  and by 

a-   ße  koRo 

in the spherical wave region. 

1 + in(r/Ro)] 

By differentiating the above expressions for P± and (r/i^P^) 

with respect to r, and normalizing the plane and spherical wave results 

by the respective low intensity limits, the two taper functions are obtained 

and are written. 

d (a Bj) 

da 

for a plane wave,  and 

Ts   =   Bl + Bl (CT)
 

CT
O 

for a spherical wave. 

The above taper functions are used in the numerical evaluation 

of the scattering integral as discussed in the next section.   They differ 

from the simpler approach of using B^a) as the taper function in that they 

include the "absorption" of the secondary signal by the saturating pump. 

It is noted however that the tapers were derived under the 

assumption that the pump and the secondary signals were propagating in a 

one dimensional fashion. In the case of a nearfield generated secondary 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
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signal, which undergoes diffraction in passing to the farfield,  it is not clear 

that the above tapers are valid.   This question will be discussed further in 

the light of published experimental results in Section 2. 3. 

2,2.2 Numerical Evaluations of the Scattering Integral   -   The use of 

numerical volume integration in combination with the finite amplitude taper 

function is now described.   The programming stems from a modification of the 

parametric transmitting array program utilized in this study which is,  in turn, 

a modification of the Muir-Willette program. Because this investigation deals 

with describing axial response no attempt has been made to include off-axis 

response in the programs.    However, the inclusion of the taper function in 

a program that handles off-axis geometries would be quite straightforward. 

Actually, two different programs have been developed to evaluate 

the scattering integral.   In the first, a volume integration over two coordinates 

is performed.   In the second, closed form, high wave number approximations 

are used to reduce the solution to a single integration along the axis of the 

pump. 

The geometry on which the programs are based is shown in Figure 

1.   It consists of a spherical wave signal source at an arbitrary distance 

(usually long) from the receiving hydrophone and a pump, assumed for con- 

venience in programming to be a circular array with a plane wave nearfield 

and a spherical wave farfield.   The nearfield of the pump projector is taken 

to be a collimated plane wave with an abrupt transition to spherical wave 

at the Rayleigh distance (area/X) and an accompanying 90° phase shift. 

The volume is formulated in cylindrical coordinates in the near- 

field and in spherical coordinates in the farfield.   The integral expression 

for the axial secondary pressure is 

16 
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Figure 1.    Parametric Receiving Array Geometry. 
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Imin       0 

r'+L RoRl 

xd xdr" 

(36) 

iW2    I-'    pr^L   2J1(koaSin0)   r^    -±R+ik0(R+r-).iks(R+Rs)^ ^ 

r'+L 
R o 

o 

koa 
R 

where T   is the nearfield taper and T   is the farfield taper given by Eqs. (34) 
P s 

and (35) respectively.   The signal projector to field point ranges are 

R ,   =   Va + r')2 + 
i i 

and 

R    = 7L
2
 + r'2 + 2L r' cos ^ 

(37) 

(38) 

I 

while 

R, V^+^-r')2 (39) 

is the source to field point range in the nearfield, and 

D 
I. 

.. 

D 
:; 

D 

R =    Vr2 + r'2 - 2r r' cos 0 (40) 

is the source to field point range in the farfield.   The lower limit in the range 

integration is r      , the shadow length of the pump transducer given by 3 mm 
r   .     =   area/X   . min s 

The basic parametric receiver program utilizes a two dimensional 

integration of the above equation.    Unfortunately, the phase variations of the 

integrand are so rapid at high pump frequencies that it is extremely difficult 

and expensive to obtain convergence of the integral. 

18 



I 
i To overcome this difficulty a high wave number approximation of 

the 0 integration and an approximate closed form x integration have been 

incorporated into a second version of the program.   This single integral program 

has been found to give equivalent results to those of the double integration 

but with considerably improved convergence. 

The angle integration is approximated as follows:   let 

'oo 
2 J, (k   a sin 

ka sin 0 o 

-Q^Riik R ± s  s e 
T sin 0   d0 (41) 

Provided that 

<J^' + 2Lr cos 0^    -   (L + r).  ^ 1, 

it is permissible without loss of accuracy,  :o let 

(42) 

( i 

\ , R   ~ L + r' s 

Then, with the substitution 

sin 0 d0 
R 

the integral may be written 

dR 
rr' 

(43) 

(44) 

i 
\ 

i, 
D 

±ik (L+r') 
s 

r^*) 2 J1 (ko a sin 0}      -o^R+i^R    dR 

R(o) 

"k   a sin 0 o 
rr' 

where 0 is regarded as a function of R. 

Integration by parts now gives 

(45) 
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(46) 

i  I 

R«»«) 
i 

ik 
_d 
dR 

R(o) 

2 J   (k  a sin 0)   -Of±R 
—**      J — e 

k   a sin 9 

ik.R 
e dR >   . 

The second term could be repeatedly integrated by par+s but would only pro- 

duce terms of higher order in k±    .   Consequently, it is neglected and since 

the first term is zero at the upper limit, the integral reduces to 

t ■ 

D 
D 
D 
D 
Ö 

ik^r-r') 

ik 

±iks(L+r') (r_rl) 

TV 

The above approximation is valid for 

k± r' >   k± 

The x integration in the nearfield is represented by 

k 
■ 

0 R 
^ O 

\    * / 

X / 
-Wik

±
Rl±iksRsl   xdx 

With the approximation 

Rsl^ L + r'    , 

(47) 

(48) 

(49) 

(50) 

the integral may be evaluated analytically. 

I The variable of integration is transformed to Rj by the relation 

x dx 
Ri 

=   dR, (51) 

1 
20 
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Then, r Rl(a) 

ik (L+r")     / -o-J^+ik.R, 
Ix =   e   s / e   * x      ± 1      dR 

R^o) 

1 

ikgO+r') r (_a±+ik±)"Va2+(r-r')2,        {-a±+ikj{r-r') 

ik± - <*± 
-   e 

With a  treated as small compared to k., the result becomes 

iks(L+r,)     -a(r-r') 

x ik 

ik   Va2 + (r-r')2, 

-   e 
ik^r-r') 

The above expressions used to reduce the integration to a single 

range integration, have produced excellent results.   Because of the con- 

vergence problems already noted, the single integration program is believed 

to be inherently more accurate than the double integration version, at least 

for pump frequencies much higher than the signal frequency. 

The scattering integral and one dimensional models give nearly 

the same results, demonstrating that the handling of the finite amplitude 

taper is consistent.   The scattering integral approach is, of course, more 

accurate in handling geometry.   With the reduction to a single integration 

the scattering integral computer program is very fast and inexpensive to use. 

Results obtained using the single integration program are compared with 

available experimental results in the following section. 

2. 3                Comparison of Theoretical Results with Experimental 
Data of Other Investicrators  

Only two sources of experimental data showing the effects of 

pump saturation on parametric receiver axial response have been identified. 
p 

One source is an article published by Berktay and Al-Temimi which contains 

(52) 

(53) 
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secondary amplitude response curves for a pump frequency of 2850 kHz and 

several different signal frequencies.   In this experiment, the receiving hydro- 

phone was placed at the approximate nearfield collimation distance of the 

pump transducer.    The other source is experimental data obtained by Konrad, 
9 

Meilen and Moffett. 

Earlier efforts by the present author to compare theory with the 

data reported by Konrad, Meilen and Moffett led to confusion because even 

the low amplitude data did not agree with any available theory.   After the 

discrepancies were brought to the attention of the authors, Moffett concluded 

that a better estimate of the hydrophone sensitivity could be made.    He did 
32 

so and was kind enough to provide revised data , not only for the originally 

reported experiment which used a 620 kHz pump and a 44 kHz signal, but 

also for experiments performed at tho same time using two additional signal 

frequencies,  30 and 13. 5 kHz.   It is the revised data that are discussed here. 

Theoretical calculations were made using the scattering integral 

approach detailed in Section 2.2.2.    Finite amplitude effects were accounted 

for by use of the taper function defined in Section 2.2. 1.   The data so 

obtained are represented by the solid curves in Figures 2 through 5. 

Figure 2 shows the comparison with a typical data set from Berktay 

and Al-Temimi.   Figures 3 through 5 show comparisons with data of Konrad, 

Meilen and Moffett for two different ranges,  5.3 m and 9.1m, and three 

different signal frequencies.   The data for the 44 kHz signal frequency re- 

place   the ones originally reported. 

Figure 2 shows a definite disagreement between theory and 

experiment for the data of Berktay and Al-Temimi, although the theory does 

fit the low amplitude data.   Barring experimental error these data indicate 

that the present taper function results in too much loss due to saturation for 

the interaction in the nearfield of the pump.   The data actually agree closely 

with the theory given by Bartram which gives similar results to what is 

obtained by the present methods if the taper function is taken to be equal 

to the fundamental component amplitude of the pump signal, rather than using 

the taper function derived in Section 2.2. 
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Figure 3, 

• EXPERIMENTAL DATA 
^— CALCULATED - SCATTERING 

INTEGRAL MODEL 
Comp-,risen of Theory and Experimental Data of Konracl, 
Meilen and Moffett (Refs 9 and 32).    Pump Frequency 
= 620 kHz, Signal Frequency = 44 kHz, Source to 
Hydrophone Range = 21.5m, Ro = 3.25m, Signal Level 
at Hydrophone = 162. 2 dB re 1 fiPa 

(a) Pump to Hydrophone Range = 5. 3m 

(b) Pump to Hydropho ^e Range = 9.1m 

24 

mm 



'""■"-•"'" «mmimmmmmmmmmmm® 

J 

: 

D 
D 
D 

. 

150-i 

as 

(» i. 

140- 

cS 

o 
Ü 

0) 

CQ 

130- 

Ofr. 

<D 
o(:•-, 

ro 
•2 
CQ 

O i 
Ü 

eg 

200 
-r- 

210 220 
-T" 
230 

—r~ 
240 250 

Pump Source Level - dB re 1 M-Pa at 1m (rms) 

150-1 

2l 
^tp   140- 

130- (b) 

200 210 220 230 240 250 
Pump Source Level - dB re 1 [iVa at 1m (rms) 

# EXPERIMENTAL DATA 
— CALCULATED - SCATTERING 

INTEGRAL MODEL 

Figure 4.   Comparison of Theory and Experimental Data of Konrad, 
Meilen and Moffett (Ref 32).    Pump Frequency = 620 kHz, 
Signal Frequency = 30 kHz, Source to Hydrophone Range 
= 21.5m, RQ = 3.25m, Signal Level at Hydrophone 
= 147.2 dB re 1 ^Pa 

(a) Pump to Hydrophone Range = 5. 3m 

(b) Pump to Hydrophone Range = 9. 1m 
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Comparison of Theory and Experimental Data of Konrad, 
Meilen and Moffett (Ref 32).    Pump Frequency = 620 kHz, 
Signal Frequency = 13.5 kHz, Source to Hydrophone 
Range =  21. 5m, R0 = 3. 25m,  Signal Level at Hydro- 
phone =  149. 8 dB re 1 fJ-Pa 

(a) Pump to Hydrophone Range = 5. 3m 

(b) Pump to Hydrophone Range = 9. lm 
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In contrast to the Berktay, Al-Temimi results the Konrad,  Meilen 

and Moffett data support the present theory quite well.   Figure 3, which 

gives the 44 kHz signal frequency data,  shows excellent agreement at the 

9. 1m hydrophone range and good agreement so far as curve shape is con- 

cerned, but a 7 dB offset at the 5.3 m hydrophone range.    Because the offset 

does not appear in any of the five other data sets it is undoubtedly the result 

of some bias error in the experiment.   Figure 4 shows quite good agreement 

between theory and experiment for the 30 kHz signal frequency experiment. 

It is interesting to note that for either range,  if the 44 kHz data 

are overlayed on the 30 kHz data and allowed to move vertically, the two 

sets may be made to line up almost perfectly.   That is, the experimental 

saturation curves have the same shape.   This shape represents slightly less 

saturation than the theory, particularly at the 5. 3 m range, but the agreement 

is considered quite good.    Here, particularly at the 9. 1m range, the present 

theory gives a much better fit than one that uses the fundamental component 

amplitude as the taper. 

Figure 5 gives the data for a signal frequency of 13. 5 kHz. These 

data show a shape considerably different from that of the other sets.   Since 

only the signal frequency was changed,and there is no known reason for 

this to appreciably affect the shape of the saturation curve,  it is believed 

that the difference may have been caused by the electronics.   Therefore, 

considerably more weight is placed on the excellent fits obtained in the 

44 kHz and 30 kHz data. 

It is concluded that the data of Konrad, Meilen and Moffett 

generally support the theory presented in Section 2.2 but that the Berktay 

and Al-Temimi data do not.   The derivation of the theory is based on the 

assumption of farfield propagation and the possibility exists that the near- 

field may, in general,  exhibit a different type of behavior.    This may account 

for the different behavior evidenced in the Berktay, Al-Temimi data.   This 

possibility will be discussed further in Section 2,5. 
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2.4 Experimental Measurement of P rametric 
Receiver Amplitude Response          

Insofar as directivity Measurements are not required in the study 

of amplitude response,  it is possible to set up a well aligned and controlled 

experiment in a tan^.   Such an experimental arrangement was effected in the 

AMETEK test pool and is shown schematically in Figure 6.   A3.8xll.4cm 

pump transducer was used, operating at a frequency of 700 kHz.   Typical 

beam patterns for this projector are shown in Figures 7 and 8.   A 50 kHz 

signal source was positioned at one end of the pool 7.9 m behind the 700 kHz 

pump.    The narrow beam pump projector was driven by a 200 watt power 

amplifier from Scientific System Technology, Inc.    The pump signal and 

intermodulation products at 650 and 750 kHz were received by an E-8 hydro- 

phone at a distance of 3. 7 m from the pump.   The 50 kHz signal was quite 

intense by comparison with the usual situation in parametric receivers. 

Consequently, it was quite easy to separate the sidebands from the pump 

by narrow band filtering.   The pump was operated in a pulsed mode, a com- 

promise necessitated by the transducer design.    However, the precaution of 

using a long enough pulse to ensure the gate sidebands being well below 

the secondary signals was taken.   A 4 ms pulse proved to be adequate and 

was used. 

The narrow band filtering was accomplished by passing the com- 

posite signal into a Hewlett-Packard Model 310A wave analyzer set on a 

bandwidth of 200 Hz.    The output signal was passed to standard calibration 

equipment and measured on a logarithmic plotter.   The pump and the sum 

and difference frequencies were measured by peaking the wave analyzer 

response on each frequency in turn.    The measurements were made absolute 

by passing a 4 ms pulse of known amplitude at 700 kHz through the signal path. 

Only one set of data were obtained before the transducer failed 

due to being overdriven and efforts to build a second unit were unsuccessful. 

The experimental data are shown in Figures 9 and 10.    Figure 9 shows the 

pump fundamental component amplitude response.    The solid curve is theory 

(Ref.  24).   These data are quite consistent and show a definite nonlinearity 
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at high source level in agreement with theory.    Figure 10 shows the secondary 

frequency amplitude data.   Although these data are not as consistent as those 

for the pump, agreement with the theory is indicated.   The solid curve is 

based on the one dimensional theory (Section 2.1).   Also shown on the plot 

are points calculated by the scattering integral method. 

In the experimental measurements the source level of the 50 kHz 

signal was 190. 5 dB re 1MPa   at 1 m.   This was determined by pulsing the 

source and measuring the amplitude prior to the onset of reflections.    In 

the actual parametric receiver experiment the signal was continuous and 

considerable standing waves were present.   In spite of this the data agree 

with theory based on the free-field source level.   The receiving array is 

insensitive to reflections not collinear with the pump. 

2.5 Conclusions;   Parametric Receiving Array Finite Amplitude Taper 

Two models for predicting parametric receiving array axial 

response have been derived.    One is based on a one dimensional weak shock 

theory model with a simple correction for nearfield geometry.   The other is 

based on the scattering integral approach. 

Both models have weak shock theory as the basis for predicting 

saturation effects.   The main result of the weak shock theory analysis is 

that the pump signal is distorted by finite amplitude effects.   At the same 

time each distortion component of the pump signal is frequency modulated 

by the signal frequency.   As the pump fundamental component, which is the 

only one resulting in sum and difference frequencies, attenuates, the side- 

bands are also attenuated.   Thus,  in the scattering integral approach, the 

taper function is not a positive definite quantity but may become negative, 

representing a diminuation of sideband energy due to pump saturation. 

This view of parametric receiving array taper seems physically 

reasonable, at least for one dimensional propagating waves.    It is supported 

experimentally by the results of Konrad,  Meilen and Moffett and by the 

experimental results obtained during the present investigation,  although the 

pump amplitudes obtained in the latter work were not high enough to make 

the results really definitive. 
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The present taper theory applied to the pump nearfield gives 

results that sharply disagree with data presoated by Berktay andAl-Temimi. 

Because application of the theory to the nearfield is not so readily justifiable 

as Its application to the farfield, this disagreement is taken as an indication 

that the theory should only be applied to cases in which the receiving hydro- 

phone is well in the pump's farfield.   The data that do support the theory are 

from experiments i^ which the receiving hydrophone was well in the farfield 

of the pump. 

D 
n 

^ U 

i 

i 

The data of Berktay and Al-Temimi tend to support the hypothesis 

that the taper in the nearfield should be the amplitude of the pump fundamen- 

tal component as a function of range.    It is tempting to speculate that this 

may,  in fact,  be the nearfield taper and that this should be combined with 

the present farfield theory to give a more comprehensive model.    The present 

author has refrained from doing this because the justification would be purely 

empirical and there is only one available supporting experiment.   Should any 

additional nearfield data become available the Question of what taper applies 

to the nearfield should again be addressed.    In the meantime the present 

model is believed to adequately describe the axial response of parametric 

receivers in which the receiving hydrophone is well in the farfield of the pump. 
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3. 0 TAPER FUNHTTDMS AMD THE PARAMETRIC TRANSMITTING ARRAY 

The scattering integral approach has been the principal method 

of predicting parametric transmitting array performance, whether 'v/ numerical 

volume integration or by approximating the integral by ^ome simpler form.   In 

this approach the concept of a taper function is useful because it enables the 

finite amplitude effects to be described in terms of a range and amplitude 

dependent diminuation of the source strength density. 

Taper functions have previously been applied successfully only 

to simplified integration models - for example, the Meilen and Moffett    model. 

It was the objective of the present work to apply the taper concept to the full 

volume integration approach.    It would then be seen whether,by more detailed 

account of geometry and inclusion of the directivity factor in calculating the 

taper function, the results would differ significantly among various taper 

functions and whether they would differ from the results obtained by Meilen 

and Moffett. 

Several taper functions have been compared,  including a new one 

derived using weak shock theory.   It should be noted,  however, that none of 

the taper functions considered includes account of possible higher order inter- 

actions that may cause the secondary frequency to be depleted at extremely 

high amplitudes.   Such effects are included in a one dimensional model pro- 

posed by Fenlon.17 That model is compared with the results of Meilen and 

Moffett in Ref.   13 wherein it is shown that significant differences are expected 

at extremely high amplitudes.   In order to include these higher order inter- 

actions in the scattering integral approach it would be desirable to derive a 

taper function from the Fenlon results in a manner similar to the treatment of 

the parametric receiving array in the previous sections.    However, that is 

beyond the scope of the present work. 

In Section 3. 1 the derivation is given for a taper function based 

on a time domain theory for difference frequency generation given by Merklinger 

Because the taper is based on the primary intensity it will be referred to as the 

14 

35 

•   ■..-..■    ...... 



^^wMmmm^mmmmm*». 

>*=,*- 

I 
: 

[ 
: 

D 

D 
Ü 

L 

l 

"Intensity Taper Function. "   As mentioned in Section 1.0, the phase reversed 

parametric array data of Mellenbruch and Muir are useful for trying out a 

taper function concept.   Therefore, the phase reversed version of the taper 

function is also derived. 

Numerical results are compared with the phase reversed data in 

Section 3.2.    In Section 3. 3 several of the proposed taper functions are com- 

pared.    Results of parametric array calculations are compared in Section 3.4. 

3. 1 Derivation of thp Intensity Taper Function 

14. Merklinger    has shown that the source function for secondary 

radiation in the lower sideband is proportional to the time derivative of the 

total intensity under the modulation envelope.   The difference frequency 

source function is obtained by extracting the Fourier coefficient at the dif- 

ference frequency 

IT 

qd ^   J d^      COS  y ^ 
O 

where 

Vt-f* 

(54) 

(55) 

The intensity variation in the envelope is assumed to be unaffected 

by the presence of the lower sideband.   Therefore,  if the primary spectrum 

consists of two frequencies of equal amplitude, I(y) may be calculated from 

theory for an initially monochromatic wave at the carrier frequency of 

intensity amplitude I0(y).   This is done using a modified form of weak shock 

theory described by Lockwood24in which the ordinary weak shock theory 

solution for B1 (a) is used, with a for directive spherical waves replaced by 

-2a (x-ro) 

a  = jS e D (9) k r 
J 

x 
dx (56) 

:. 

[ 
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-a (r-r ) 
and the fundamental component amplitude B^a) multiplied by e 

The problem of obtaining I(y) for the ordinary and the phase reversed para- 

metric arrays is now reduced to finding appropriate weak shock theory 

expressions for the intensity variation as a function of o . 

The intensity in an initially sinusoidal wave without reflection 

is obtained by assuming that continuous parts of the wave are described by 

I 
: 

: 

V   =   sin (i,  where 

0   =   w   (t-x/c) + a sin 0   =   y + a sin ^ 

The dependence of the total intensity is then 

TT 

r     2,. j I oc sin   0 dy 

TT 

2    |        (a sin- 0) sin 0 cos 0 d0 

1 mm 

- - a sin3 Ö      +-+0        sin2 0   ,  + 4 sin 0   .   cos0t - j a sin   vmin^ 2 T vmin VTTiin   7 mln , 

(57) 

(58) 

0   . nun 
min   2 min mm       ^ 

where 0       is a solution of mm 

1 
I 
I 
I 
I 

0   .      ^   a sin 0   ._ vmin mm 

It is convenient to normalize the preceding expression to a zero distortion 

value of unity.   Then we have 

_L   -   i + -^- rr sin3 0       + — sin 0   ,    cos 0       - -7- sin 0 
I      "   1 + 37r   a sin   '"min     TT   

bia '"min vmm     Jr mm 

(59) 

(60) 
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An expression for the intensity in an initially sinusoidal wave 

with reflection at a range corresponding to J = a  is now derived.   It is 

assumed that after inversion straight lines remain straight.    Otherwise, 

continuous parts are described by 

V   =   sin 0 ,    where 

0   =   y + err. sin (i, and 

a«   =   a - 2o     . E r 

(61) 

f 

*■ 

... 

1" 

q   ■ 

4  . 

1 41    H 

f   ' 

If' 

mm 

am 

We redefine 0   ,   as the shock phase corresponding to the shock that forms 
mm 

subsecuent to reflection; 0        is the phase corresponding to the pre-reflection 
max 

shock   A) = TT - 0   .        .    (Note that the time origin has been shifted by * 
'    max "minr 

to put the new shock in the usual place.) 

We now have the intensity given by 

y(^    J ■•^ max 

I oc iin   0 dy + sin min 
J 
y^miJ 

J 
^max* 

__L-y_. 

max       1     .  2 ri min ,   1    .2 ^         E 
T" '  4 sin   Vax -  "I- +   4  sin   ^min    3 

(sin3^max-   sinXin) 

The normalized expression in terms of 0 and 0   .    is max mm 

1 2 

dy 

(62) 
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0        - 0   4 i I    _    max      mm   _  _L 
I TT 27r sin2 ^max" Sin2 ^min 

(63) 

+ — Ä        sin2 0       + -I-   (TT - 0     J sin"" 0 37r »min min    STT vmax/ max 

•■■ 

; 

.. 

! 

In case 0        < 0        ,   the preceding expression breaks down.   The straight xii V'aac »"max       min 
segment corresponding to the pre-reflection shock overtakes the zero and 

a sawtooth is formed instantly.   The normalized intensity turns out to be 

2 sin   0 max 

TT - 0   „   + Or- sin 0rY,av| max      E max; 
\2 

(64) 

The present taper function (Eq.  60) is compared with other proposed 

taper functions in Section 3,3.   First,  however, results computed using the 

taper function (Eqs.  63 and 64) are compared with experimental data for the 

phase reversed parametric array. 

3.2 Numerical Results - Phase Reversed Parametric Array 

The numerical integration program of Muir and Willett has been 

cast into a form that accepts a finite amplitude taper function.   The taper 

function which is, of course, amplitude dependent, is calculated as a 

function of the angular coordinate so that the directivity pattern of the 

primary radiation weights the amplitude.   Thus, the axial taper is much 

more extreme than the taper at, for example, the -3 dB points. 

Several methods of accounting for nearfield saturation effects 

have been tried.   The best results have been obtained by treating the near- 

field as a collimated plane wave out to the Rayleigh distance.   The ex- 

pression for cr is given in Eq. (70) of Section 3. 3.   It is interesting to note 

that if spherical wave theories are used the same nearfield distortion 

(assuming a R   « 1) may be obtained by letting ro = R0/e . 

I 
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As a preliminary calculation to check out the program and the 

taper function derived in Section 3. 1, theoretical curves were calculated 

to compare with the phase reversed parametric array data of Mellenbruch 

and Muir .   The results are shown in Figure 11.   The data are for a 14 kHz 

difference frequency produced by a source operating at 424 and 438 kHz 

and reflected at a range of 4 yards.   Results using a less sophisticated 
28 

theory were previously reported by Lockwood.      The present results agree 

considerably better with experiment than the previous ones did.    However, 

the agreement at the highest amplitudes is not as good as had been hoped 

for.   Anomalous nearfield effects are suspected as the reason. 

3.3 

: 

D 

Comparison of Various Taper Functions 

17, Fenlon    has given a list in consistent notation of several taper 

functions that have been proposed by various authors for use in conjunction 

with quasi one dimensional geometrical models.   Those from Fenlon's list 

that apply to the farfield of the parametric source are now compared. 

First, it is noted that all of the functions in the list may be 

expressed in the form 

-1/2 

T   =   il + 2 I J 

provided that a be appropriately defined.    The form of Eq. (65) was proposed 
13 14 independently by Meilen and Moffett    and by Merklinger    as an approxi- 

18 
mation of the fundamental component taper given by Blackstock.      Equation 

(65) is compared with the Blackstock result in Figure 12, which also shows , 

for a comparable definition of a, the taper function derived in Section 3. 1. 

From Figure 12 it appears that the differences among the three functions are 

not great. 

(65) 

The expressions for a appropriate for the various authors' treat- 
13 

ments of Eq. (65) are now discussed.   The Meilen-Moffett    form is given by 

1 

a   =   a   sinh     (Wr ) (66) 

40 
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Figure 11. Reflected Parametric Transmitter. Reflector at 4 yd. 
Difference frequency level data from Meilenbruch & 
Muir    (Ref.   I). 
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33 
The Merklinger, Meilen and Moffett    taper function,  hereafter referred to 

for brevity by the name of the first author only, is given by Eq.  (65) with 

-Aa r' Vo    f      -4V   dr'     f     /V   drll 
e ^ e r" 

16 Two taper functions due to Fenlon    are the Fenlon Taper Function and the 

Modified Berktay, Leahy Taper.   The appropriate forms of a are, for Fenlon, 

a  =   a. 
Q^r . To El V^-E^V) 

and for Modified Berktay, Leahy, 

WoJ-W 

Here, £,(•) represents the exponential integral.   Equation (69) is equivalent 

to the a used in the taper function derived in Section 3. 1 (Eq.  56). 

The results of evaluating Eq.  (65) as a function of r/ro with a 

given variously by Eqs. (66),  (67),  (68),  and (69) are shown in Figure 13. 

This comparison was made for a case when aiQ ro was small (o^ = . 001). 

Also,  for the Meilen-Moffett calculation the value of ro was taken to be 

twice the value used in the others.    It will be seen that there is very little 

difference between the results of Eqs.  (67) and (68).    The results of Eq.  (69) 

are so nearly identical to those of Eq.  (68) that they have not been shown. 

The results using Eq.  (66) are nearly the same as the others except for small 

and large values of r/r0 . 

For larger values of <* r, the disparity among the various forms 

increases.    However,  it is likely that the predominant taper will be absorp- 

tion in cases when there is a significant difference. 

(67) 

(68) 

(69) 
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3. 4 Comparison of Parametric Transmitting Array 
Calculations Using Various Taper Functions 

In the previous section the relative amplitudes of several taper 

functions were compared.   The taper functions considered were identified 
as the Meilen-Moffett . Fenlon!   modified Berktay-Leahy ,    Merklinger/ 

and intensity taper functions.   It was noted that all except the last may be 

represented by the same function or a single parameter called a.    It is the 
definition of a that distinguishes the various tapers.   The values of the 
taper function in the farfield were compared for a particular set of parameters 

for various theories excluding the intensity taper, and it was concluded 

that the differences among them were quite small. 

t 

i 

The results of using the various tapers in the same numerical 

volume integration program are now compared.   As a basis for comparison 

we have taken the parametric scaling curves given by Meilen and Moffett. 

These curves are the solid lines in Figure 14.   A single value,  50, of the 
downshift ratio and a wide range of values for scaled source level and for 

{2a R )~    were chosen.   Each taper function except the one derived in the 
present investigation was defined in two ways; with and without directivity 

taken into account in defining off-axis values of a. 

The Merklinger and Fenlon a's are as defined in the previous 

report with directivity included by replacing ao by a0D(e).   The modified 
Berktay-Leahy a is the same as the expression used in the intensity taper 

function, which is 

I 

n 

a   = 

la e dx 
'     °   J 

o 

To ,. r        -aTx 

ao    ^    ^ + D(e) -*-        dx 

r< R 

r> R. 

The version without directivity, of course,  lias D(e) = 1. 
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As an initial comparison the low amplitude data for (2a Rj     = 1, 

10, 100 and 1000,  are plowed as squares (Q) in Figure 14.    For the source 
level utilized all of the taper functions give the same results.   It is interest- 

ing that the numerical integration gives virtually identical results to the 

Meilen- Moffett model at low amplitude, with the exception of the point 
corresponding to (2a R )'1 = 1, which falls about 3 dB above the solid curve. 

The higher amplitude results for the modified Berktay-Leahy and 

the intensity taper functions are also shown in Figure 14.   This comparison 
demonstrates the difference in results between the two functional forms of 
the taper theories, with the same a.   A difference of about 3 dB is apparent 
in each of the cases shown.   The modified Berktay-Leahy results without 

directivity appear about 1. 5 dB lower than the results with directivity, 
except for the nearfield limited case.   The results discussed above are all 

within about 3 dB of the Meilen-Moffett results. 

A set of rather surprising results was obtained by using the 

oriainal Mellen-Moffett taper function in the numerical integration.   The 
calculated parametric efficiencies were within 1 dB of the original model's 

results.   These data are not shown in the figures. 

The same data points were run using the Fenlon and. the Merklinger 

taper functions.   Unfortunately, the results using these tapers are not 
directly comparable with those discussed above because they are b.   ed on 

spherical wave theories and do not account for nearfield iaper.   T 
results could have been made to fit the results of otl   ■   nodels by appropriate 
choice of the effective source radius ro.   The resulU did indicate that the 

Fenlon and Merklinger results were within about 1 dB of each other. 

It may be concluded that the parametric transmitting array 

scattering integral is tolerant, with only minor differences in results, of 
vast differences in approach and in degree of approximation of both geometry 

and of the taper function.   With all of the results lying within 3 dB of each 
otter it would be quite difficult to determine by direct experiment which of 
the approaches gives the best results.   As was noted in the previous section 
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however, an adaptation of the intensity taper function to the reflected para- 

metric array produced much better results than the present author's earlier 

adaptation of the Meilen-Moffett theory. 

It should be noted that all of the data used in the above compari- 

sons applied to range points well in the farfield of the interaction volume. 

This condition, which is required for validity of the Mellen-Moffett model, 

is not necessary in the volume integration approach. 

3.5 Conclusions - Parametric Transmitting Array Finite Amplitude Effects 

The results reported in Section 3, 0 indicate that the simple geometry 

model proposed by Meilen and Moffett gives results almost identical to those 

obtained by volume integration, when the same taper function is used.   They 

also demonstrate that accounting for absorption and directivity in defining 

the taper function associated with nonlinear effects makes very little difference 

in the results.   On the other hand, the manner of describing nonlinear effects 

in the nearfield and,  in spherical wave theories, the choice of the effective 

source radius r , make substantial differences in the results. 

The effects of higher order interact ons have not been addressed 

in the present work.   These would be expected to be important only at extremely 

high intensities. 
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4 o crr.riMMENDATTnMR FOR FUTURE WORK. 

I ' The results of the present Investigation point to a olear tequlre- 

ment for additional experimental wo*.   It is unfoitanate that the objectives 

| of the expetitnental ponion of this ^ were not faUv -U^ heoan     of 
the surprisingly low effioienoy of the pro        rs that were buüt.   These 

objectives should be pursued further. 

fl A definite requirement exists for concentrating on nearfield 
II saturation effects, both in the parametric receiving array and '^he par- 

1 n metric transmitting array.   In the case of the Para™triCJ.™*^ 
U there is a fundamental question yet to be answered regarding the fo m of 

he source strength taper in the nearfield.   The data presently available 
Ü ^rrta The nearfLd and farfield behavior may be distinctly different. 

theory presented herein agrees well with farfield data but departs 

fl drastically from nearfield data.   Additional nearfield *™"*™***" 
U chec. the one presenüy available source and to form the basts    -—ble 

{j composite model that would include both nearfield and farfield effects. 

n in addition to further investigation of nearfield effects, addl- 

. 0 tional work on the parametric transmitting array should address deriving 
a taper function that accounts for higher order Interactions.   Such a taper 

" 0 Inlon would be useful because of the flexibility that the scattering inte- 

gral approach permits in accurately describing various geometrres. 

1 
I 
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